SRAM BASED REPROGRAMMABLE FPGAs FOR SPACE

Bernard BANCELIN Aerospace Product Marketing Manager ATMEL Nantes SAS, France

AIMEL

ATF280E2J-E 0706 6T8044

Overview

Atmel FPGA Key Points and Architecture

ATF280E FPGA

Configuration memory AT69170

Tools (software and hardware)

Roadmap

ATF280E and AT69170 Developments are supported by ESA & CNES

Atmel Radiation Hardened FPGAs

Re-programmable (SRAM based technology)

- Reliability
- Unlimited reprogramming
- Easy to debug
- Engineering models representative of flight models

SEU hardened Memory points

- Core cell Flip-Flops, embedded memory (FreeRAM), configuration memory and controller
- No need for SEU mitigation

Complemented with rad-hard EEPROMs for FPGA configuration

- 1 Mbit serial
- 4 Mbit serial

In-Flight reconfiguration

FPGA Architecture Overview

Efficient Routing Architecture

Cell to bus connection

Cell to cell connection

- Efficient functions using almost only cell to cell connections
- FreeRAM uses very few global routing (address) and local (data) routing bus (free otherwise)
- Most of the routing structure is still available for global routing after blocks and RAM local routing

Core-Cell Modes

- Efficient operators only use 1 core-cell / bit
- Fast multi-bit operators using cell to cell diagonal/orthogonal connections
- Pipelining (DFF) possible inside core-cell

Tri-State/Mux mode

Global & Fast Clocking

8 Dedicated 'Global Clock buses'

- Individual 'Global Clock' line feeds all the logic cells in one column
- GCK1 to GCK8
- Distributed across a special highspeed bus (top edge of the FPGA)
 - => FPGA distribution < 1 nS</p>
- 'Global Clock Pad' connection
- Each column of the array has a Column Clock selected from one of the 8 'Global Clock' buses
- 4 Additional 'Fast Clock buses'
 - Only for the right/left most columns of the array
 - FCK1-2 to left-side I/O
 - FCK3-4 to right-side I/O

Each sector column can be clocked by

- Plane 4 'Express bus'
- Global Clock column

Primary I/O

Located next to a core cell Interfaces directly to its adjacent core cell:

Adjacent orthogonal connections

I/O connects the bussing network of the 3 nearest edge cells (repeaters):

- Above local bus
- Adjacent local bus
- Below Express bus

ATF280E Key Features

- 288K equivalent ASIC gates
- 50 MHz clock speed
- 14400 core-cells (each 2 LUT + 1 DFF)
- 115 Kbit FreeRAM (900 modules of 32x4 blocks)
- 1.8V Core / 1.8V and 3.3V Cold-sparing I/Os

- Dedicated 1.8V LVDS buffers: 8 pairs Rx + 8 pairs Tx
- 3.3V PCI-compliant I/Os
- ATC18KRHA 0.18um CMOS technology (same as ATC18RHA ASIC and AT697F LEON2 processor)
- MCGA472 (308 + 32 User I/O) / MQFP256 (148 + 32 User I/O)
- Configuration load integrity check
- Configuration self-integrity check
- Boundary scan interface

ATF280E Radiation Hardening

- Process & library hardening
 - EPI substrate (low resistivity, low thickness)
 - Thin oxide
 - Density of body ties to delay parasitic transistor switch on
 - Spacing of body/well ties to active area
 - Increase N+/P+ spacing
 - Add charge collection diodes
 - Drain minimization (cross section minimization)
 - Isolation transistors with NP isolation resistors
 - Detection of most SEE sensitive nodes

ATF280E Radiation Hardening

- Memories, configuration bits
 - Bit separation (external EDAC)
 - Duplication
 - Dual Mode Redundancy
 - Bit Duplication
 - Self-regeneration logic
 - Differential write mechanism

ATF280E Radiation Hardening

- Design hardening
 - Redundant nodes separation by
 - Spacing
 - Guard ring
 - Isolation between N and P redundant paths
 - Delay
 - TMR with majority vote
 - TMR + delay
 - Differential signals
 - Single node simulation by current injection (LET evaluation)
 - Multiple node simulation needs 3-D simulator

ATF280E Radiation Performances (preliminary data)

- 0.18um technology (same as ATC18RHA ASIC)
- Radiation test results on ATF280E
 - TID up to 300 Krad
 - No SEL up to 80MeV.cm²/mg @ 125°C

SEU Performances

no SEU up to LET 30MeVxcm²/mg

To be continued

- FreeRAM
- EDAC

Final report end of the year

AT69170E Key Features

- 4 Mbit Rad Hard EEPROM
- 512 bytes Pages
- Standard TWI programming interface
 FPGA serial configuration interface
- 3.3V Supply Voltage
- FP18 Package
- Endurance: 10K R/W cycles
- Data retention: 15 years (extension to 20 under analysis)
- ATC18RHA 0.18um technology + E2 cell: Hardening by design
 - TID expected better than 60 Krad
 - 5 E-7 error/device/day target in GEO (or 2 E-11 error/configuration)

Securing FPGA Configuration

SRAM-based FPGAs reload their configuration on power-up

[1] Configuration Load checker (CRC) secures bit stream download

[2] Configuration Self-Integrity checker secures internal configuration during operation

SPACE FPGA ROADMAP SUMMARY

Contact and Documentation

Atmel website

http://www.atmel.com/dyn/products/devices.asp?family_id=641

Hotline

Radhard-fpga@nto.atmel.com

Radiation reports upon request

Qualification and Evaluation Qualpacks upon request

Thank you!

Questions?

Add-On slides

Key Features & Benefits (1/2)

Feature	Benefit		
Distributed Fast SRAM (FreeRAM™) . Faster, lower cost for designs using SRAM			
. Fast & efficient array multipliers & computing logic w/o using busses	. Faster, lower cost DSP designs		
. Engineering Change Option (ECO)	. Fast Incremental design changes w/o recompiling entire design		
. Schmitt Trigger on every input	. Better hysteresis (noise immunity) & performance		
. Extremely low power consumption (~5mA standby)	. Improved reliability, longer battery life and autonomy		
. Extremely small FreeRAM granularity	. Well suited for DSP applications		

Key Features & Benefits (2/2)

Feature	Benefit
. On-board CRC data checker	. Reliable mission critical applications
. Full PCI compliance	. PCI logic can be implemented in ATF280E meeting PCI requirements
. Cache Logic capability	. Dynamic reconfiguration
. Automatic component generators (Logic & RAM compilers)	. Fully predictable, reusable designs
. Industry standard design tools with optimized synthesis compiler	. Minimizes investment in tools and don't have to learn new tools
. Easy Migration to Atmel ASIC	. Cost reduction for high volume designs

Design Flow

AT40KEL040 Radiation Performances (1/2)

TiD Performances

- Tested up to 300Krads
 - All parts passed all functional and electrical tests
 - Dynamic parameters unchanged
 - No leakage

SEL Performances

- Tested up to 70 MeV.cm²/mg
 - No single event latch-up up to 70 MeV.cm²/mg (maximum LET used for the test)

AT40KEL Results SEU results

Orbit	Error rate /bit/day	Error rate /device/day	MTTF (years)
GEO	4.1 E-9	7.0 E-5	39
LEO 53°/1000km	2.4 E-8	4.0 E-4	7
LEO 98°/852km. Spot	1.0 E-8	1.7 E-4	16
LEO 98°/600km	4.4 E-9	7.5 E-5	36
LEO 510/450km. ISS	1.3 E-9	2.2 E-5	125

1Mbit EEPROMs

AT17LV010-10DP serial EEPROM

- 3.3V supply voltage
- FP28 Package
- Total dose better than 20 Krads when biased
- Total dose better than 60 Krads when unbiased

AT28C010-12DK 128k x 8 EEPROM

- 5V supply voltage
- FP32 Package
- Total dose better than 10 Krads when biased
- Total dose better than 30 Krads when unbiased

Hardware Platform - Backplane (1/3)

- 6U Compact PCI form factor
- Front panel with communication interfaces connectors
 - Power Indicators
 - Main Reset Pushbutton
 - 8x SpaceWire Interface
 - 2x Uart Interface
 - 1x SpaceProgrammer Interface

Hardware Platform - Backplane (2/3)

Main Features

- AT69170E Configurator
 4Mbit serial EEPROM
- AT68166F SRAM MCM
 16Mb SRAM (512K x 32)
- AT60142F SRAM
 - 4Mb SRAM (512K x 8)
- AT7910 SpaceWire Router
- Allows evaluation of the FPGA with other ATMEL space qualified components

ATF280 Hardware Development Platform

The hardware platform is the main platform for

- Evaluating the ATF280E FPGA
- Demonstrating the ATF280E FPGA
- Developing ATF280E-based applications

The hardware platform is made of two modules

- A backplane with a set of peripherals
- A mezzanine board with the ATF280 Soldered

Hardware Platform - SpaceProgrammer (1/2)

SpaceProgrammer replaces CPS

USB Host interface

 Programmation Dongle seen as a standard RS232 COM port

HE10 Target Interface

Galvanic isolation with Target(s)

